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A method of simulating some problems of the heat conduction type
with moving boundaries is examined. Two problems with exact
solutions are simulated.

In a number of heat conduction (or diffusion) prob-
lems it is necessary to investigate regions where a
phase interface varies with time. The law of motion
of the interface must be found from physical’ consider-
ations. Examples are the well-known problems of
Stefan, Verigin, and others. There are no analytical
solutions of such problems, with rare exceptions,
and the known numerical methods require great effort

and time. The electrical modeling method [1-4] is very

effective in giving an approximate solution to problems
of this type.

The present paper describes a method of simula-
ting certain problems with moving boundaries, prob-
lems of the Stefan and Verigin type, the method being
different from that of [1-~4].

We shall examine the equations

— 80 d (— _aUu -
C(x)—ar:'a—(k(x)W)_b(x)u(xvt)v
0<t<T, O<x<y (D), (1)
oU 0 oU ;
A P sty PR
0<1<T, yity <x<! (2)

with the initial condition
Ux,0) =g(x), 0<x<e, Ulx,0) = @),
e x <l c=y(0) (3)
and boundary conditions
RUA0, 0= — 40, k(LD =—q() @930, @)
where
E=%(0), k=k().

The law of motion of the phase interface is given
by the equation

Y, Dy () =k Uy, 1) —
—E(yO) Uy (), O + Py (), b (5)

On the phase interface one of the following conditions
is given:

Uy (t),)=U(y (), 1) = U,=const (6)
(Stefan's problem) or

U @), =Uw, 1, (7)

al y(t), ) =al,(y®), 1) (8)

(Verigin's problem). The presence gf condition (5)
reduces these problems to a number of nonlinear ones
[5].

We shall assume that the following congruence con-
ditions are fulfilled:

T =—70), ¢ () =—q(0), 7 =0 aF (@) =ag @),

and that a unique solution exists for both problems.
Implicit difference scheme for approximate solution
of the problem. We introduce a network in the regions
[0,y(H)], [yt),11, by dividing the segment 0 <= x < [ at
points x; into N equal parts with step h, where xj =
=ih, i =0,...,N, in such a way that the point c is one
of the division points. Let x = kh = ¢, We choose the
steps with respect to time, Ty, to depend on h in such
a way that in each interval ) the value of y changes
by h, i.e., yp = Vg = h, whe;re Vi is the approximate

value of y(t) at time f={,= 2 T

i=!

We replace problem (1)-(8) by the following dif-
ference problem, in order to determine_'rn and ap-
proximate values ﬁin- Ujp of functions U (x,t) and
U(x, t) at the points x;, t:

8, Usn = — (B 8,V — %8, U1, ) —b: Ui
1
2, ..., ktn—1 9)

i=1

’

;8 Uy == (k, 8, Uiy — kl o U[_L W —b0Ums

1
h
i=ktn—1, .. Nl n=1,.,N (10)
Eﬁx Uon = q‘(tnAl)"’: - _(;n—l, (11)
k8, Un_1, n=—q({tn—1) = — Gn-, (12)
Up—=n i=1,... b Us=q; i=k, .., N. (13)
At points of the interface y(t) we have
Dk—}—n, n = Ulz+n, n = Uo (14)
(Stefan's problem);
Uk+n, n = Uk+n, n, (15)
Eax Uk+ﬂ—~1, n = Clﬁx Uk+n, n (16)
(Verigin's problem);

Tn—1h/t, =k, 6, Uk-}-n, n “Enax U’H—"—-l » ey = R{y,) (17
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N 1
il = (zin x “in T ”“ (2141, n "’Z[n).
i

T

L=z, 8 =2,

We solve the nonlinear system of equations obtained
for Um, U; in* Tn With the aid of iteration. Thus, if
Ui Uik Ty (k =1, ..,0 — 1)_have already been
found, then to determine Ujn, Uyys Ty, We iterate
according to the scheme

s gt Lo i o oS =
L. 6,00 — k8,00 2— 000 (18)
e U = % (S UL — R 8,U ) —o Ll (19)
U =qu UY =g, (20)
B8, U = —Guet, B8 UKL oo —ga (21)
Uk-kn a = Uk+n no lev (22)
Zjl\fi)n, n = L"'I;i}n no (23)
(;61 E,k(~5:—)/z~—!, n = Cléx Uk(j—)n, s (24)
h ! (s--1) ) _
{s) ) T B ; )
T Fa 1\'/1 - "h Lq%i Gn-i  Rad Crnlnet n—
5. UL, ]} | (25)
where
i -
(\;z:[";‘) = (Zr(r:)‘zi,n-»l)’ F"_‘k T4, g,(‘b“wl,
n

If the given value is T ( ) > 0, then, from the system
(18)—(24) with s = 0 we find U(O) U( :

in® ¥in:
we obtain Tnl), and so on,
Assuming that q(t) q), g

=t = 0,000 q(), g0 —Dy k8,0

- 84, - =20, k,- 6x<p,-~ k‘ 8.1 >0 when 0=x=l, and
using the method of [5,6], it may he shown that, for
any assigned value T:lo) >0, the iterations (18)—(25)
will he uniquelv determined for any s = 0, and ('}
¢S, o will converge to the solution Um, Ui, ™ of
the system (9)—(16).

The above results may be extended to the more
general case, Specifically, we shall examine the
equations

and from (25)

q(t') for any t" =

- o
! —
cly, LU U, U ) = 5
J [~ aE’) bt U0 UYC
—7(/\ (x) W, —b0x, 1, L, U, U Ul ),
cle U UL L) o
__i( 9] -dfi)wbu,z UL Ul
dx oy

—q(0), k8. —
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with initial conditions (3), boundary conditions

RU(0,8) = —q(t, U(0, 1), kU (1, ) = —q(t, UL, 1)),
conditions at the moving interface (6)—(8) and
Tay(6) kU (e, )=k (DU, x4+
L d(x, U, U U, UY.

vix, t, U, U, U,

The last expression is examined with x = y(t}. By
putting i
q” l—q C—(O.I -,7)). I -1 :(7(2‘/141-"’. (1, fio )
Cp Oy (b U UL U .
c=C aa=c(x, LU U, U=,

FL ==7}[' n--i _—‘5 (.\', t, U‘ E’xv Ux.x')f:[

n—1s
bi = b[‘ n—1 = b(.\" t, U, va Uxx)f:fn".]
Giaa =@, 1, U, U, U, U=

th-1
in (9)—(25), it can be shown that the iterations con-
verge to the solution of the system (9)~(17).

As regards agreement between the difference proh-
lem solution and the exact solution, the reader should
refer to [5, 6].

Electrical circuit of model. The system (18)—(25)
and its corresponding iteration are not very suifable
for numerical solution because of the large number of
calculations, but the system does permit a simple
solution on the electrical resistance model examined
below,

Let us examine the electrical circuit shown in the
figure. We shall denote the potentials at the nodes
Py,..., Py by Vg, ..., Vy» respectively. Let

.
po R R
k; ¢
R,:—;_-R (i~ 1. kdn—1
).
}2
R == R R=1"RF
k{ L‘l
_—;-—-R (i~ k4n . 1,.,N—1NO,

i

Rk-i-n:O’ R]. er E,- rRy,

bV

Vo= rhg, VOV —rhg, VOV Ul

v
where R, V are scale factors for resistance and the
variable U, and r is a sufficiently large positive
number. At the free ends o” the resistors ﬁ we as-
sign potentials V; (= Ui _y vy where \ =¢;V.
Using klrchhoff's law for each nodal pomt Py, 1t
1s easy to show that the system of equations for po-
tentials V;, at nodes Pj coincides with the finite-
difference system of the Stefan problem, if onlv 7
is known.
For the nonlinear Stefan problem

"R Ri==—"_R R .
kx i, n—t
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Electrical circuit of model.

- R,i=1 .. k4+n—1,
i, n—1
_» 5 Ta .
Ri—E—R, Riﬂ[“i,n—l R, R =
-b] Ri=k+n+1, .. N—1,

i, n—~1
R,.,=0, Ru=rRy, R.—rR,

Ve =rhq,_V,Vo=—rhq,_V, V,  =UV.

To model the Verigin problem we must put

Ri“‘—— 1Rir:: ’
k; : R
R:—l——R,t= B4n—1
i bi
2
&_m%—R&hmllR
i C;

where m = knE/Ena .

In the nonlinear case we have
1

Ri - = R R R, R; == = R’
kl C/ n—1 bi‘ =l
. SR R 7 T R R m R
»Ri = m -kv;,' » R[ com C[' e ! = b(, n--1 '
Ek.e A= pr =Ry Rp- Ry,
‘71‘ = rh?}n—lv' Vi=~ mrhq”,_lv-

In conformity with the iteration process in (18)- (25),
we assign arbitrary T(O) >(. Then the resistances R
are determined from the calculation formulas, and
thus all the U/}, U/}, in the electrical ciréuit are found.
Then Tx(]l) is calculated from (25), and (%), ('!] are
found, and so on. The iteration is stopped when a
given accuracy for T, is attained. In going from n = ny
ton =ny + 1, the point of phase separation Py, moves
to the next node to the right, The changes which must
then be introduced into the electrical circuit in the
vicinity of node Py, are simple and self-evident.

As an illustration of the application of the above
method, we present the results of modeling two simple

problems and compare them with the exact solutions.
Let us examine the following Stefan problem:

Uy=40,10<x<3, 0<t<234), U=0, U0,x)=

with boundary conditions

kU, (0, ) = — 0.4555 —— “, . kUL(3.1) = 0.

Its analytic solution has the form
erf (x/ V26
eri(a/ 1 2)

U =0, yit) =a V', a=0.620.

Uy, H=1—

In the model we took h = 0.2; the result found by
modeling was o = 0,628,
Let us now examine the Verigin problem.

Ui=2U,(0<x<y)}, U =U,(y)<x<2),

-—ﬁgaﬂ:&ﬂm—l:,
Ve

exp (— -
P (=)
Uelo(t), 1), Dl (@), 1) =

=U (g (1), H— 2U. (1), 1).

— U, (2, 1) =0.7283

U, 0y =0, U (y(®), )= Uy, 1),
R

Its analytic solution has the form

U ty=1-—13723eri(x/ V16 1),
Ux, 1) == 1.0344 [1 —erf (x/ V 80)1,
u(t) = aV't, a=0.724

In the model we took h = 0.1, and the result found by
modeling was o = 0,726, The error in determining o
was 1.5% for the Stefan problem and 0.3% for the
Verigin probliem. Both problems were modeled on an
EI-12 electro-integrator. On the average 4—5 itera-
tions were required to determined 7,, taking into ac-
count that ¢! . The number of iterations may
be reduced if 7{) is chosen close to .
It should be noted that the principal error of the

method is determined by the quantity h.

= Tp—t

NOTATION

U(x, 1), Ux,t)=body temperature or pressure: t—time; x—space
variable; q(t)—heat or fluid flux; k, k—thermal conductivities or filtra-
tion coefficients; y—latent heat of fusion (or solidification), or spe-
cific porosity: ¢, T—~specific heat: b, b—heat transfer or diffusion co-
efficients with respect to external medium; Uy—fusion (solidification)
temperature.
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